International Symposium on Life Cycle Assessment and Construction

LCA case studies and methods for infrastructures

Using Life Cycle Assessment to compare Wind Energy Infrastructures

By

Brendan Cleary
BA BAI MSc CEng MIEI MIWEA

School of Civil & Building Services Engineering, Dublin Institute of Technology, Dublin, Ireland

Supervisors: Dr Aidan Duffy DIT & Dr Alan O'Connor TCD

Date: 11th July 2012

INTRODUCTION

- Background
- Objective
- Methodology
- Results
- Conclusions
- Future work

Source: Washington Post 1922

BACKGROUND

- EU 20-20-20
 - 40% of energy from renewable sources by 2020
- Electricity more economically & environmentally friendly
- •Larger wind turbines 7 10MW
- •Wind Turbine Towers (WTTs) need to become:
- Taller, stronger & stiffer
- Steel towers become unmanageable
- •Issues with steel towers beyond 85m in height

BACKGROUND

OBJECTIVE

- Concrete WTTs vs. Steel WTTs
 - Environmental viewpoint in terms of life cycle greenhouse gas emissions (tCO2-e)
- Identify a tower solution

VS.

METHODOLOGY

- Emissions life cycle assessment
- Hybrid analysis incorporating process & Input-Output (I-O)

Property	Onshore		Offshore	
Height (m)	96.55	96.55	126.5	126.5
Top diameter (m)	3.5	3	3.4	3
Top thickness (m)	0.01	0.4	0.02	0.4
Base diameter (m)	4.5	8.2	5.1	8
Base thickness (m)	0.02	0.6	0.06	0.6
Tower material	steel	concrete	steel	concrete
Density (kg/m3)	7,850	2,400	7,850	2,400
Tower mass (kg)	142,000	1,856,000	625,000	2,146,000
Wind turbine rating (MW)	2	2	3.6	3.6
Wind turbine mass (kg)	80,000	80,000	1,364,000	1,364,000
	Castledockrell,	Castledockrell,	Arklow Bank,	Arklow Bank,
	Co.Wexford,	Co.Wexford,	Co.Wicklow,	Co.Wicklow,
Location	Ireland	Ireland	Ireland	Ireland

METHODOLOGY

- Lifetime
 - Wind turbines and steel tower 20 years
 - Offshore transformer, cables and concrete tower 40 years
 - Wind turbines and steel tower re-fit at year 20
- Process data from Inventory of Carbon and Energy (ICE)
- I-O data from sector emission intensities table for Ireland derived by DIT student
- System boundary Cradle to Grave

METHODOLOGY

Life cycle emissions for onshore and offshore WTTs

Life cycle greenhouse gas emissions share for onshore concrete WTT

Life cycle greenhouse gas emissions share for offshore concrete WTT

Effect of % of GGBS addition on concrete WTT LCE at year 20

WTT	WTT height			LCE %
type	(m)	GGBS (%)	LCE (tCO ₂ .e)	decrease
Onshore	96.55	0 (using CEM 1)	1,984	0%
Onshore	96.55	50	1,805	9%
Onshore	96.55	70	1,706	14%
Offshore	126.5	0 (using CEM 1)	4,829	0%
Offshore	126.5	50	4,394	9%
Offshore	126.5	70	4,249	12%

CONCLUSIONS

- At year 40, LCE are 4% and 9% lower for concrete WTTs for both onshore and offshore facilities respectively
- Reduction in LCE and increase in durability with GGBS
- Concrete WTTs provide an alternative to steel WTTs for larger wind turbines
- Reduction of LCE = reduction in energy consumption and materials = reduction of costs
- Investigate the LCE of wind farm developments to win the argument that wind energy is the way forward

FUTURE WORK

- In discussions with an offshore wind developer
- Determine the LCE of their concrete foundation solution
- Develop a life cycle multi-objective optimisation model for wind energy coupled with energy storage
- Determine the marginal abatement cost (€/tCO₂-e) associated with wind/storage system

QUESTIONS

Email: <u>brendan.cleary1@mydit.ie</u>

Tel: +353 1 4023962

